

Jawaharlal Nehru Engineering College

 Laboratory Manual

of

 UNIX AND SHELL PROGRAMMING

 For

Second Year Students

 Dept: Computer Science & Engineering

FOREWORD

It is my great pleasure to present this laboratory manual for second year

engineering students for the subject of Unix and Shell Programming keeping in

view the vast coverage required for understanding the concept of Shell

Programming.

As a student, many of you may be wondering with some of the questions in your

mind regarding the subject and exactly what has been tried is to answer through

this manual.

As you may be aware that MGM has already been awarded with ISO 9000

certification and it is our endure to technically equip our students taking the

advantage of the procedural aspects of ISO 9000 Certification.

Faculty members are also advised that covering these aspects in initial stage itself,

will greatly relived them in future as much of the load will be taken care by the

enthusiasm energies of the students once they are conceptually clear.

Dr. S.D.Deshmukh,

 Principal

LABORATORY MANUAL CONTENTS

This manual is intended for the Second year students of Computer Science &

Engineering in the subject of Unix and Shell Programming. This manual typically

contains practical/Lab Sessions related Unix and Shell Programming covering

various aspects related the subject to enhanced understanding.

 Unix and Shell Programming provides students the idea of new operating

system.It also helps to understands the concept of Shell programming along with

the use of various filters including simple,advanced,etc.It also provides the idea of

new scripting language like PERL.

Students are advised to thoroughly go through this manual rather than only topics

mentioned in the syllabus as practical aspects are the key to understanding and

conceptual visualization of theoretical aspects covered in the books.

Good Luck for your Enjoyable Laboratory Sessions

Prof. D .S. Deshpande Mr. S.A.Kharat

 HOD,CSE Lecturer, CSE Dept.

SUBJECT INDEX

1. Execution of various file/directory handling commands.

2. Simple shell script for basic arithmetic and logical calculations.

3. Shell scripts to check various attributes of files and directories.

4. Shell scripts to perform various operations on given strings.

5. Shell scripts to explore system variables such as PATH, HOME etc.

6. Shell scripts to check and list attributes of processes.

7. Execution of various system administrative commands.

8. Write awk script that uses all of its features.

9. Use seed instruction to process /etc/password file.

10. Write a shell script to display list of users currently logged in.

11. Write a shell script to delete all the temporary files.

12. Write a shell script to search an element from an array using binary

 searching.

DOs and DON’’T DOs in Laboratory:

1. Make entry in the Log Book as soon as you enter the Laboratory.

2. All the students should sit according to their roll numbers starting from their left

to right.

3. All the students are supposed to enter the terminal number in the log book.

4. Do not change the terminal on which you are working.

5. All the students are expected to get at least the algorithm of the

program/concept to be implemented.

6. Strictly observe the instructions given by the teacher/Lab Instructor.

Instruction for Laboratory Teachers:

1. Submission related to whatever lab work has been completed should be done

during the next lab session. The immediate arrangements for printouts related to

submission on the day of practical assignments.

2. Students should be taught for taking the printouts under the observation of lab

teacher.

3. The promptness of submission should be encouraged by way of marking and

evaluation patterns that will benefit the sincere students.

1

1. Lab Exercise

Exercise No 1: (2 Hours) – 1 Practical

Aim: -Execution of various file/directory handling commands.

TOOLS: UNIX operating system/any flavor of Linux.

STANDARD PROCEDURE:

 Analyzing the Problem:

• Start the Linux and enter the user name and password.

• Now write startx and after that open the terminal.

• At the terminal try the different commands and see the output.

 Designing the Solution:

• At the terminal first perform the command without and with the different
 Options available for it.

 The exercises in this lab cover the usage of some of the most basic
system utilities that users and administrators alike need to be familiar with.
Most of the commands are used in navigating and manipulating the file system.
The file system is made up of files and directories.

THEORY:

1) pwd COMMAND:

 pwd - Print Working Directory. pwd command prints the full filename of
the current working directory.

SYNTAX:
 The Syntax is
 pwd [options]

2

2) cd COMMAND:
 cd command is used to change the directory.

SYNTAX:
 The Syntax is
 cd [directory | ~ | ./ | ../ | -]

 3) ls COMMAND:
 ls command lists the files and directories under current working directory.

 SYNTAX:
 The Syntax is
 ls [OPTIONS]... [FILE]

 OPTIONS:

-l
Lists all the files, directories and their mode, Number of links,
owner of the file, file size, Modified date and time and filename.

-t Lists in order of last modification time.

-a Lists all entries including hidden files.

-d Lists directory files instead of contents.

-p Puts slash at the end of each directories.

-u List in order of last access time.

-i Display inode information.

 4) rm COMMAND:
 rm linux command is used to remove/delete the file from the directory.

 SYNTAX:
 The Syntax is
 rm [options..] [file | directory]

3

 OPTIONS:

-f Remove all files in a directory without prompting the user.

-i

Interactive. With this option, rm prompts for confirmation before
removing any files.

 5) mv COMMAND:

 mv command which is short for move. It is used to move/rename file
from one directory to another. mv command is different from cp command
as it completely removes the file from the source and moves to the directory
specified, where cp command just copies the content from one file to
another.

SYNTAX:
 The Syntax is
 mv [-f] [-i] oldname newname

 OPTIONS:

 -f

This will not prompt before overwriting (equivalent to --
reply=yes). mv -f will move the file(s) without prompting even
if it is writing over an existing target.

 -i Prompts before overwriting another file.

6) cat COMMAND:

 cat linux command concatenates files and print it on the standard output.

SYNTAX:
 The Syntax is
 cat [OPTIONS] [FILE]...

OPTIONS:

-A Show all.

-b Omits line numbers for blank space in the output.

4

-E Displays a $ (dollar sign) at the end of each line.

-n Line numbers for all the output lines.

 7) cmp COMMAND:
 cmp linux command compares two files and tells you which line numbers are
different.

SYNTAX:
 The Syntax is
 cmp [options..] file1 file2

 OPTIONS:

- c Output differing bytes as characters.

- l

Print the byte number (decimal) and the differing byte values
(octal) for each difference.

- s Prints nothing for differing files, return exit status only.

 8) cp COMMAND:
 cp command copy files from one location to another. If the
destination is an existing file, then the file is overwritten; if the destination is
an existing directory, the file is copied into the directory (the directory is not
overwritten).

SYNTAX:
 The Syntax is

 cp [OPTIONS]... SOURCE DEST

10) echo COMMAND:
 echo command prints the given input string to standard output.

SYNTAX:
 The Syntax is
 echo [options..] [string]

5

11)mkdir COMMAND:
 mkdir command is used to create one or more directories.

SYNTAX:
 The Syntax is
 mkdir [options] directories

OPTIONS:

-m Set the access mode for the new directories.

-p Create intervening parent directories if they don't exist.

-v Print help message for each directory created.

12) paste COMMAND:
 paste command is used to paste the content from one file to another file. It is
also used to set column format for each line.

SYNTAX:
 The Syntax is
 paste [options]

OPTIONS:

-s Paste one file at a time instead of in parallel.

-d Reuse characters from LIST instead of TABs .

13) rmdir COMMAND:
 rmdir command is used to delete/remove a directory and its subdirectories.

SYNTAX:
 The Syntax is
 rmdir [options..] Directory

OPTIONS:

-p
Allow users to remove the directory dir name and its parent
directories which become empty.

6

CONCLUSIONS:

In this way we can run different file and directory handling commands and see the
output on standard output window.

7

2. Lab Exercise

Exercise No 2: (2 Hours) – 1 Practical

Aim: -Simple shell script for basic arithmetic and logical calculations.

TOOLS: UNIX operating system/any flavor of Linux.

STANDARD PROCEDURE:

• Step 1: start UNIX OS in your computer and login in it and enter Username
and Password.

• Step 2: Create a folder with your Id Number or Name Followed by Roll No.

• Step 3: now go to your folder from the terminal and after that open the VI
editor with the desired program name with extension .sh.

• Step 4: now write your program and quit back to the terminal.

• Step 5: After writing program make it executable by using
$chmod +x program name.

• Step 6: Now run the program using any one of the method…

• sh program name

• ./program name

THEORY:

There are various operators supported by each shell. Our tutorial is based on
default shell (Bourne) so we are going to cover all the important Bourne Shell
operators in the tutorial.
 There are following operators which we are going to discuss:

• Arithmetic Operators.
• Logical Operators.
• String operators.
• File operators
• Relational operators.

But in this section we are only concentrating on first two i.e. arithmetic & logical
operators.

8

Arithmetic Operators:

There are following arithmetic operators supported by Bourne Shell.

Assume variable a holds 10 and variable b holds 20 then:

Operator Description Example

+ Addition - Adds values on either side
of the operator

`expr $a + $b` will give 30

Operator Description Example

- Subtraction - Subtracts right hand
operand from left hand operand

`expr $a - $b` will give -10

* Multiplication - Multiplies values on
either side of the operator

`expr $a * $b` will give 200

/

Division - Divides left hand operand
by right hand operand

`expr $b / $a` will give 2

% Modulus - Divides left hand operand
by right hand operand and returns
remainder

`expr $b % $a` will give 0

= Assignment - Assign right operand in
left operand

a=$b would assign value of b
into a

== Equality - Compares two numbers, if
both are same then returns true.

[$a == $b] would return
false.

!= Not Equality - Compares two numbers,
if both are different then returns true.

[$a != $b] would return true.

9

Logical Operators:

There are following Boolean operators supported by Bourne Shell.

Assume variable a holds 10 and variable b holds 20 then:

Operator Description Example

! This is logical negation. This inverts a
true condition into false and vice versa.

[! false] is true.

-o This is logical OR. If one of the
operands is true then condition would
be true.

[$a -lt 20 -o $b -gt 100] is
true.

-a This is logical AND. If both the
operands are true then condition would
be true otherwise it would be false.

[$a -lt 20 -a $b -gt 100] is
false.

CONCLUSIONS:

With the help of given procedure and information about the operators we can write
shell program to perform various operation.

10

3. Lab Exercise

Exercise No 3: (2 Hours) – 1 Practical

Aim: - Shell scripts to check various attributes of files and directories.

TOOLS: UNIX operating system/any flavor of Linux.

STANDARD PROCEDURE:

• Step 1: start UNIX OS in your computer and login in it and enter Username
and Password.

• Step 2: Create a folder with your Id Number or Name Followed by Roll No.

• Step 3: now go to your folder from the terminal and after that open the VI
editor with the desired program name with extension .sh.

• Step 4: now write your program and quit back to the terminal.

• Step 5: After writing program make it executable by using
$chmod +x program name.

• Step 6: Now run the program using any one of the method…

• sh program name

• ./program name

 THEORY:

Basic File Attributes - Read, Write and Execute

There are three basic attributes for plain file permissions: read, write, and execute.

Read Permission of a file

If you have read permission of a file, you can see the contents. That means you can
use more, cat, etc.

11

Write Permission of a file

If you have write permission of a file, you can change the file. This means you can
add to a file, or overwrite a file. You can empty a file called "yourfile" by copying
the empty (/dev/null) file on top of it

cat /dev/null yourfile

Execute Permission of a file

If the file has execute permission, then you can ask the operating system to run the
file as if it were a program. If it's a binary file/program, you can execute it like any
other program.

If the file is a shell script, then the execute attribute says you can treat it as if it
were a program. To put it another way, you can create a file using your favorite
editor, add the execute attribute to it, and it "becomes" a program. However, since
a shell has to read the file, a shell script has to be readable and executable. A
compiled program does not need to be readable.

The basic permission characters, "r", "w", and "x"

r means read w means write, and x means execute.

Using chmod to change permissions

The chmod command is used to change permission. The simplest way to use the
chmod command is to add or subtract the permission to a file. A simple plus or
minus is used to add or subtract the permission.

You may want to prevent yourself from changing an important file. Remove the
write permission of the file "myfile" with the command

chmod -w myfile

If you want to make file "myscript" executable, type

chmod +x myscript

You can add or remove more than one of these attributes at a time

chmod -rwx file

12

chmod +wx file

You can also use the "=" to set the permission to an exact combination This
command removes the write and execute permission, while adding the read
permission:

chmod =r myfile

Note that you can change permissions of files you own. That is, you can remove all
permissions of a file, and then add them back again. You can make a file "read
only" to protect it. However, making a file read only does not prevent you from
deleting the file. That's because the file is in a directory, and directories also have
read, write and execute permission. And the rules are different. Read on.

Basic Directory Attributes - Read, Write and Search

Directories use these same permissions, but they have a different meaning. Yes,
very different meanings.

Read permission on a directory

If a directory has read permission, you can see what files are in the directory. That
is, you can do an "ls" command and see the files inside the directory. However,
read permission of a directory does not mean you can read the contents of files in
the directory.

Write permission on a directory

Write permission means you can add a new file to the directory. It also means you
can rename or move files in the directory.

Execute permission on a directory

Execute allows you to use the directory name when accessing files inside that
directory. The "x" permission means the directory is "searchable" when searching
for executables. If it's a program, you can execute the program.

13

File Test Operators:

There are following operators to test various properties associated with a Unix file.

Assume a variable file holds an existing file name "test" whose size is 100 bytes
and has read, write and execute permission on:

Operator Description Example

-b file Checks if file is a block special file if
yes then condition becomes true.

[-b $file] is false.

-c file Checks if file is a character special file
if yes then condition becomes true.

[-b $file] is false.

-d file Check if file is a directory if yes then
condition becomes true.

[-d $file] is not true.

-f file Check if file is an ordinary file as
opposed to a directory or special file if
yes then condition becomes true.

[-f $file] is true.

-g file Checks if file has its set group ID
(SGID) bit set if yes then condition
becomes true.

[-g $file] is false.

-k file Checks if file has its sticky bit set if
yes then condition becomes true.

[-k $file] is false.

-p file Checks if file is a named pipe if yes
then condition becomes true.

[-p $file] is false.

-t file Checks if file descriptor is open and
associated with a terminal if yes then
condition becomes true.

[-t $file] is false.

-u file Checks if file has its set user id (SUID)
bit set if yes then condition becomes
true.

[-u $file] is false.

-r file Checks if file is readable if yes then
condition becomes true.

[-r $file] is true.

-w file Check if file is writable if yes then
condition becomes true.

[-w $file] is true.

14

Operator Description Example

-x file Check if file is execute if yes then
condition becomes true.

[-x $file] is true.

-s file Check if file has size greater than 0 if
yes then condition becomes true.

[-s $file] is true.

-e file Check if file exists. Is true even if file
is a directory but exists.

[-e $file] is true.

Example:

#!/bin/sh

file="/home /jnec /test.sh"

if [-r $file]
then
 echo "File has read access"
else
 echo "File does not have read access"
fi

if [-w $file]
then
 echo "File has write permission"
else
 echo "File does not have write permission"
fi

if [-x $file]
then
 echo "File has execute permission"
else
 echo "File does not have execute permission"
fi

if [-f $file]
then

15

 echo "File is an ordinary file"
else
 echo "This is sepcial file"
fi

if [-d $file]
then
 echo "File is a directory"
else
 echo "This is not a directory"
fi

if [-s $file]
then
 echo "File size is zero"
else
 echo "File size is not zero"
fi

if [-e $file]
then
 echo "File exists"
else
 echo "File does not exist"
fi

CONCLUSIONS:

With the help of given procedure and information about the File operators we can
write shell program to check various attributes of files and directories.

16

4. Lab Exercise

Exercise No 4: (2 Hours) – 1 Practical

Aim: - Shell scripts to perform various operations on given strings.

TOOLS: UNIX operating system/any flavor of Linux.

STANDARD PROCEDURE:

• Step 1: start UNIX OS in your computer and login in it and enter Username
and Password.

• Step 2: Create a folder with your Id Number or Name Followed by Roll No.

• Step 3: now go to your folder from the terminal and after that open the VI
editor with the desired program name with extension .sh.

• Step 4: now write your program and quit back to the terminal.

• Step 5: After writing program make it executable by using
$chmod +x program name.

• Step 6: Now run the program using any one of the method…

• sh program name

• ./program name

THEORY:

There are various functions by using which you can perform different operation on
given string.

String Manipulation Functions:

1) String Length
${#string}
expr length $string
These are the equivalent of strlen() in C.
expr "$string" : '.*'

17

2) Length of Matching Substring at Beginning of String
expr match "$string" '$substring'
$substring is a regular expression.
expr "$string" : '$substring'

e.g.
stringZ=abcABC123ABCabc
|------|
12345678

echo `expr match "$stringZ" 'abc[A-Z]*.2'` # 8
echo `expr "$stringZ" : 'abc[A-Z]*.2'` # 8

3) Index
expr index $string $substring
Numerical position in $string of first character in $substring that matches.
This is the near equivalent of strchr() in C.

e.g.

stringZ=abcABC123ABCabc
123456 ...
echo `expr index "$stringZ" C12` # 6
 # C position.

echo `expr index "$stringZ" 1c` # 3

4) Substring Extraction
${string: position}
Extracts substring from $string at $position.
If the $string parameter is "*" or "@", then this extracts the positional parameters,
starting at $position.
${string: position: length}
Extracts $length characters of substring from $string at $position.

18

e.g.
stringZ=abcABC123ABCabc
0123456789.....
0-based indexing.

echo ${stringZ:0} # abcABC123ABCabc
echo ${stringZ:1} # bcABC123ABCabc
echo ${stringZ:7} # 23ABCabc

echo ${stringZ:7:3} # 23A
 # Three characters of substring.

5) Substring Removal
${string#substring}
Deletes shortest match of $substring from front of $string.
${string##substring}
Deletes longest match of $substring from front of $string.

6) Substring Replacement
${string/substring/replacement}
Replace first match of $substring with $replacement.
${string//substring/replacement}
Replace all matches of $substring with $replacement.

CONCLUSIONS:

With the help of given procedure and information about the String manipulating
Functions we can write shell program to perform various operation on given string.

19

5. Lab Exercise

Exercise No 5: (2 Hours) – 1 Practical

Aim: - Shell scripts to explore system variables such as PATH, HOME etc.

TOOLS: UNIX operating system/any flavor of Linux.

STANDARD PROCEDURE:

• Step 1: start UNIX OS in your computer and login in it and enter Username
and Password.

• Step 2: Create a folder with your Id Number or Name Followed by Roll No.

• Step 3: now go to your folder from the terminal and after that open the VI
editor with the desired program name with extension .sh.

• Step 4: now write your program and quit back to the terminal.

• Step 5: After writing program make it executable by using
$chmod +x program name.

• Step 6: Now run the program using any one of the method…

• sh program name

• ./program name

THEORY:

UNIX and all UNIX-like operating systems such as OpenBSD, Linux, Redhat,
CentOS, Debian allows you to set environment variables. When you log in on
UNIX, your current shell (login shell) sets a unique working environment for you
which is maintained until you log out. Following are most command examples of
environment variables used under UNIX operating systems:

• PATH - Display lists directories the shell searches, for the commands.
• HOME - User's home directory to store files.
• TERM - Set terminal emulator being used by UNIX.
• PS1 - Display shell prompt in the Bourne shell and variants.
• MAIL - Path to user's mailbox.
• TEMP - Path to where processes can store temporary files.
• PWD - Path to the current directory.
• HISTFILE - The name of the file in which command history is saved

20

• HISTFILESIZE -The maximum number of lines contained in the history
file

• HOSTNAME -The system's host name
• PATH -It is a colon-separated set of directories where libraries should be

searched for.
• USER -Current logged in user's name.
• DISPLAY -Network name of the X11 display to connect to, if available.
• SHELL -The current shell.
• EDITOR - The user's preferred text editor.
• PAGER - The user's preferred text pager.
• MANPATH - Colon separated list of directories to search for manual pages.

Display Environment Variable

Open the terminal and type the following commands to display all environment
variables and their values under UNIX-like operating systems:

$set
Or
$printenv
Or
$env

To explore any of the variables mentioned above you have to simply write
$echo $ Variable name

CONCLUSIONS:

With the help of given procedure and information about Environment variables we
can write shell program to Explore all the Environment variables.

21

6. Lab Exercise

Exercise No 6: (2 Hours) – 1 Practical

Aim: - Shell scripts to check and list attributes of processes.

TOOLS: UNIX operating system/any flavor of Linux.

STANDARD PROCEDURE:

• Step 1: start UNIX OS in your computer and login in it and enter Username
and Password.

• Step 2: Create a folder with your Id Number or Name Followed by Roll No.

• Step 3: now go to your folder from the terminal and after that open the VI
editor with the desired program name with extension .sh.

• Step 4: now write your program and quit back to the terminal.

• Step 5: After writing program make it executable by using
$chmod +x program name.

• Step 6: Now run the program using any one of the method…

• sh program name

• ./program name

THEORY:

A process can be simply defined as an instance of a running program. It should be
understood that a program is an entity that resides on a non-volatile media (such as
disk), and a process is an entity that is being executed (with at least some portion,
i.e. segment/page) in RAM.

A process has a series of characteristics:

• The process ID or PID: a unique identification number used to refer to the
process.

• The parent process ID or PPID: the number of the process (PID) that started
this process.

22

• Nice number: the degree of friendliness of this process toward other
processes (not to be confused with process priority, which is calculated
based on this nice number and recent CPU usage of the process).

• Terminal or TTY: terminal to which the process is connected.

The ps command displays active processes.
The syntax for the ps command is:
ps [options]
Options

-a Displays all processes on a terminal, with the exception of group
leaders.

-c Displays scheduler data.

-d Displays all processes with the exception of session leaders.

-e Displays all processes.

-f Displays a full listing.

-glist Displays data for the list of group leader IDs.

-j Displays the process group ID and session ID.

-l Displays a long listing

-plist Displays data for the list of process IDs.

-slist Displays data for the list of session leader IDs.

-tlist Displays data for the list of terminals.

-ulist Displays data for the list of usernames.

CONCLUSIONS:

With the help of given procedure and information about the ps with option we can
write shell program to check and list attributes of process.

23

7. Lab Exercise

Exercise No 7: (2 Hours) – 1 Practical

Aim: -Execution of various system administrative commands.

TOOLS: UNIX operating system/any flavor of Linux.

STANDARD PROCEDURE:

Analyzing the Problem:

• Start the Linux and enter the user name and password.

• Now write startx and after that open the terminal.

• At the terminal try the different commands and see the output.

 Designing the Solution:

• At the terminal first perform the command without and with the different
 Options available for it.

 The exercises in this lab cover the usage of some of the most basic
system utilities that users and administrators alike need to be familiar with.
Most of the commands are used in navigating and manipulating the file system.
The file system is made up of files and directories.

THEORY:

Users and Groups

users

Show all logged on users. This is the approximate equivalent of who -q.

groups

Lists the current user and the groups she belongs to. This corresponds to the
$GROUPS internal variable, but gives the group names, rather than the
numbers.

24

bash$ groups
bozita cdrom cdwriter audio xgrp

bash$ echo $GROUPS
501

chown, chgrp

The chown command changes the ownership of a file or files. This
command is a useful method that root can use to shift file ownership from
one user to another. An ordinary user may not change the ownership of files,
not even her own files. [1]

root# chown bozo *.txt

The chgrp command changes the group ownership of a file or files. You
must be owner of the file(s) as well as a member of the destination group (or
root) to use this operation.

chgrp --recursive dunderheads *.data
The "dunderheads" group will now own all the "*.data" files
#+ all the way down the $PWD directory tree (that's what "recursive"
means).

useradd, userdel

The useradd administrative command adds a user account to the system and
creates a home directory for that particular user, if so specified. The
corresponding userdel command removes a user account from the system
[2] and deletes associated files.

The adduser command is a synonym for useradd and is usually a
symbolic link to it.

usermod

Modify a user account. Changes may be made to the password, group
membership, expiration date, and other attributes of a given user's account.
With this command, a user's password may be locked, which has the effect
of disabling the account.

25

groupmod

Modify a given group. The group name and/or ID number may be changed
using this command.

CONCLUSIONS:

With the help of given procedure and information about the commands we can
execute system administrative task.

26

8. Lab Exercise

Exercise No 8: (2 Hours) – 1 Practical

Aim: -Write awk script that uses all of its features.

TOOLS: UNIX operating system/any flavor of Linux.

STANDARD PROCEDURE:

Analyzing the Problem:

• Start the Linux and enter the user name and password.

• Now write startx and after that open the terminal.

• At the terminal try the different commands and see the output.

 Designing the Solution:

• At the terminal first perform the command without and with the different
 Options available for it.

 The exercises in this lab cover the usage of some of the most basic
system utilities that users and administrators alike need to be familiar with.
Most of the commands are used in navigating and manipulating the file system.
The file system is made up of files and directories.

THEORY:

The AWK utility is an interpreted programming language typically used as a data
extraction and reporting tool. It is a standard feature of most Unix-like operating
Systems.
Awk is an excellent tool for building UNIX/Linux shell scripts. AWK is a
Programming language that is designed for processing text-based data,
either in files or data streams or using shells pipes. In other words you can
combine awk with shell scripts or directly use at a shell prompt.

The essential organization of an AWK program follows the form:

pattern { action }

27

The pattern specifies when the action is performed. Like most UNIX utilities,
AWK is line oriented. That is, the pattern specifies a test that is performed with
each line read as input. If the condition is true, then the action is taken. The default
pattern is something that matches every line. This is the blank or null pattern. Two
other important patterns are specified by the keywords "BEGIN" and "END." As
you might expect, these two words specify actions to be taken before any lines are
read, and after the last line is read. The AWK program below:

BEGIN { print "START" }
 { print }
END { print "STOP" }

adds one line before and one line after the input file. This isn't very useful, but with
a simple change, we can make this into a typical AWK program:

BEGIN { print "File\tOwner"," }
{ print $8, "\t", $3}
END { print " - DONE -" }

Functions in awk :-

 index(string,search) length(string)
split(string,array,separator) substr(string,position)
substr(string,position,max) tolower(string)
 |toupper(string)

CONCLUSIONS:

With the help of given procedure and information about the use of awk commands
we can successfully execute all awk features.

28

9. Lab Exercise

Exercise No 9: (2 Hours) – 1 Practical

Aim: - Use sed instruction to process /etc/password file.

TOOLS: UNIX operating system/any flavor of Linux.

STANDARD PROCEDURE:

Analyzing the Problem:

• Start the Linux and enter the user name and password.

• Now write start x and after that open the terminal.

• At the terminal try the different commands and see the output.

 Designing the Solution:

• At the terminal first perform the command without and with the different
 Options available for it.

 The exercises in this lab cover the usage of some of the most basic
system utilities that users and administrators alike need to be familiar with.
Most of the commands are used in navigating and manipulating the file system.
The file system is made up of files and directories.

THEORY:

sed - stream editor for filtering and transforming text

SYNTAX

 sed [OPTION]... {script-only-if-no-other-script} [input-file]...

DESCRIPTION

 Sed is a stream editor. A stream editor is used to perform basic text
 transformations on an input stream (a file or input from a pipeline).
 While in some ways similar to an editor which permits scripted edits
 (such as ed), sed works by making only one pass over the input(s), and

29

 is consequently more efficient. But it is sed's ability to filter text
 in a pipeline which particularly distinguishes it from other types of
 editors.

 -n, --quiet, --silent

 suppress automatic printing of pattern space

 -e script, --expression=script

 add the script to the commands to be executed

 -f script-file, --file=script-file

 add the contents of script-file to the commands to be executed

 -i[SUFFIX], --in-place[=SUFFIX]

 edit files in place (makes backup if extension supplied)

 -c, --copy

 use copy instead of rename when shuffling files in -i mode
 (avoids change of input file ownership)

 -l N, --line-length=N

 specify the desired line-wrap length for the 'l' command

 --posix

 disable all GNU extensions.

 -r, --regexp-extended

 use extended regular expressions in the script.

 -s, --separate

 consider files as separate rather than as a single continuous

30

 long stream.

#sed 'ADDRESSs/REGEXP/REPLACEMENT/FLAGS' filename
#sed 'PATTERNs/REGEXP/REPLACEMENT/FLAGS' filename

• s is substitute command
• / is a delimiter
• REGEXP is regular expression to match
• REPLACEMENT is a value to replace

FLAGS can be any of the following

• g Replace all the instance of REGEXP with REPLACEMENT
• n Could be any number, replace nth instance of the REGEXP with

REPLACEMENT.
• p If substitution was made, then prints the new pattern space.
• i match REGEXP in a case-insensitive manner.
• w file If substitution was made, write out the result to the given file.
• We can use different delimiters (one of @ % ; :) instead of /

CONCLUSIONS:

With the help of given procedure and information about the commands we can
process sed instructions on /etc/passwd file.

31

10. Lab Exercise

Exercise No 10: (2 Hours) – 1 Practical

Aim: - Write a shell script to display list of users currently logged in.

TOOLS: UNIX operating system/any flavor of Linux.

STANDARD PROCEDURE:

• Step 1: start UNIX OS in your computer and login in it and enter Username
and Password.

• Step 2: Create a folder with your Id Number or Name Followed by Roll No.

• Step 3: now go to your folder from the terminal and after that open the VI
editor with the desired program name with extension .sh.

• Step 4: now write your program and quit back to the terminal.

• Step 5: After writing program make it executable by using
$chmod + x program name.

• Step 6: Now run the program using any one of the method…

• sh program name

• ./program name

THEORY:

who - show who is logged on

SYNOPSIS

who [OPTION]... [FILE | ARG1 ARG2]

DESCRIPTION

-a, --all
same as -b -d --login -p -r -t -T -u

-b, --boot
time of last system boot

-d, --dead
print dead processes

-H, --heading
print line of column headings

-i, --idle

32

add idle time as HOURS:MINUTES, . or old (deprecated, use -u)
--login

print system login processes (equivalent to SUS -l)
-l, --lookup

attempt to canonicalize hostnames via DNS (-l is deprecated, use --lookup)
-m

only hostname and user associated with stdin
-p, --process

print active processes spawned by init
-q, --count

all login names and number of users logged on
-r, --runlevel

print current runlevel
-s, --short

print only name, line, and time (default)

CONCLUSIONS:

With the help of given procedure and information about the commands we can
write shell program to display list of users currently logged in.

33

11. Lab Exercise

Exercise No 11: (2 Hours) – 1 Practical

Aim: -Write a shell script to delete all the temporary files.

TOOLS: UNIX operating system/any flavor of Linux.

STANDARD PROCEDURE:

• Step 1: start UNIX OS in your computer and login in it and enter Username
and Password.

• Step 2: Create a folder with your Id Number or Name Followed by Roll No.

• Step 3: now go to your folder from the terminal and after that open the VI
editor with the desired program name with extension .sh.

• Step 4: now write your program and quit back to the terminal.

• Step 5: After writing program make it executable by using
$chmod + x program name.

• Step 6: Now run the program using any one of the method…

• sh program name

• ./program name

THEORY:

rm - remove files or directories

SYNOPSIS

rm [OPTION]... FILE...

OPTIONS

Remove (unlink) the FILE(s).

-d, --directory
unlink FILE, even if it is a non-empty directory (super-user only)

-f, --force
ignore nonexistent files, never prompt

-i, --interactive
prompt before any removal

-r, -R, --recursive

34

remove the contents of directories recursively
-v, --verbose

explain what is being done .

To remove a file whose name starts with a `-', for example `-foo', use one of these
commands:

rm -- -foo
rm. /-foo

fsck :-

check and repair a Linux file system.

SYNOPSIS

fsck [-sACVRTNP] [-t fstype] [filesys ...] [--] [fs-specific-options]

DESCRIPTION

fsck is used to check and optionally repair one or more Linux file systems. filesys
can be a device name (e.g. /dev/hdc1, /dev/sdb2), a mount point (e.g. /, /usr,
/home), or an ext2 label or UUID specifier (e.g. UUID=8868abf6-88c5-4a83-98b8-
bfc24057f7bd or LABEL=root). Normally, the fsck program will try to run file
systems on different physical disk drives in parallel to reduce total amount time to
check all of the file systems.

CONCLUSIONS:

With the help of given procedure and information about the commands we can
write shell program to delete all the temporary files.

35

12. Lab Exercise

Exercise No 12: (2 Hours) – 1 Practical

Aim: -Write a shell script to search an element from an array using binary

searching..

TOOLS: UNIX operating system/any flavor of Linux.

STANDARD PROCEDURE:

• Step 1: start UNIX OS in your computer and login in it and enter Username
and Password.

• Step 2: Create a folder with your Id Number or Name Followed by Roll No.

• Step 3: now go to your folder from the terminal and after that open the VI
editor with the desired program name with extension .sh.

• Step 4: now write your program and quit back to the terminal.

• Step 5: After writing program make it executable by using
$chmod + x program name.

• Step 6: Now run the program using any one of the method…

• sh program name

• ./program name

THEORY:

if condition

if condition which is used for decision making in shell script, If given condition is
true then command is executed.
Syntax:

 if condition

 then

 command1 if condition is true or if exit status

 of condition is 0 (zero)

 ...

 ...

 Fi

36

i)Test command or [expr] is used to see if an expression is true, and if it is true it
return zero(0), otherwise returns nonzero for false.

Syntax:
test expression OR [expression]

ii) eval:

The general format of the eval command is very simple:
 eval [command_to_be_interpreted...]

Algorithm for Binary Search:-

i.Binary search works by comparing an input value to the middle element
of the array. The comparison determines whether the element equals the
input, less than the input or greater.

ii. When the element being compared to equals the input the search stops and
typically returns the position or number of searches of the element. If the element
is not equal to the input and the element at the middle point is greater than the
input being searched, the current middle point becomes the new high point and the
array is cut in half again and re-tested.

iii. If the element at the middle point is less than the input being searched, the
current middle point becomes the new low point and the array is cut in half
again and retested. This cutting in half and adjusting either the high
point or the low point is repeated until the item is found or the low
point and the high point converge.

CONCLUSIONS:

With the help of given procedure and information about the commands we can
write shell program to find an array element using Binary Search.

